The OsSPK1-OsRac1-RAI1 defense signaling pathway is shared by two distantly related NLR proteins in rice blast resistance

OsSPK1-OsRac1-RAI1 防御信号通路是水稻抗稻瘟病中两个远亲 NLR 蛋白共同作用的结果

阅读:6
作者:Minxiang Yu, Zhuangzhi Zhou, Xue Liu, Dedong Yin, Dayong Li, Xianfeng Zhao, Xiaobing Li, Shengping Li, Renjie Chen, Ling Lu, Dewei Yang, Dingzhong Tang, Lihuang Zhu

Abstract

Resistance (R) proteins are important components of plant innate immunity. Most known R proteins are nucleotide-binding site leucine-rich repeat (NLR) proteins. Although a number of signaling components downstream of NLRs have been identified, we lack a general understanding of the signaling pathways. Here, we used the interaction between rice (Oryza sativa) and Magnaporthe oryzae to study signaling of rice NLRs in response to blast infection. We found that in blast resistance mediated by the NLR PIRICULARIA ORYZAE RESISTANCE IN DIGU 3 (PID3), the guanine nucleotide exchange factor OsSPK1 works downstream of PID3. OsSPK1 activates the small GTPase OsRac1, which in turn transduces the signal to the transcription factor RAC IMMUNITY1 (RAI1). Further investigation revealed that the three signaling components also play important roles in disease resistance mediated by the distantly related NLR protein Pi9, suggesting that the OsSPK1-OsRac1-RAI1 signaling pathway could be conserved across rice NLR-induced blast resistance. In addition, we observed changes in RAI1 levels during blast infection, which led to identification of OsRPT2a, a subunit of the 19S regulatory particle of the 26S proteasome. OsRPT2a seemed to be responsible for RAI1 turnover in a 26S proteasome-dependent manner. Collectively, our results suggest a defense signaling route that might be common to NLR proteins in response to blast infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。