Repurposing FDA-Approved Drugs for Temozolomide-Resistant IDH1 Mutant Glioma Using High-Throughput Miniaturized Screening on Droplet Microarray Chip

利用液滴微阵列芯片上的高通量微型筛选重新利用 FDA 批准的药物来治疗替莫唑胺耐药 IDH1 突变型胶质瘤

阅读:6
作者:Haijun Cui, Xueyuan Sun, Marcel Schilling, Christel Herold-Mende, Markus Reischl, Pavel A Levkin, Anna A Popova, Şevin Turcan

Abstract

To address the challenge of drug resistance and limited treatment options for recurrent gliomas with IDH1 mutations, a highly miniaturized screening of 2208 FDA-approved drugs is conducted using a high-throughput droplet microarray (DMA) platform. Two patient-derived temozolomide-resistant tumorspheres harboring endogenous IDH1 mutations (IDH1mut ) are utilized. Screening identifies over 20 drugs, including verteporfin (VP), that significantly affected tumorsphere formation and viability. Proteomics analysis reveals that nuclear pore complex may be a potential VP target, suggesting a new mechanism of action independent of its known effects on YAP1. Knockdown experiments exclude YAP1 as a drug target in tumorspheres. Pathway analysis shows that NUP107 is a potential upstream regulator associated with VP response. Analysis of publicly available genomic datasets shows a significant correlation between high NUP107 expression and decreased survival in IDH1mut astrocytoma, suggesting NUP107 may be a potential biomarker for VP response. This study demonstrates a miniaturized approach for cost-effective drug repurposing using 3D glioma models and identifies nuclear pore complex as a potential target for drug development. The findings provide preclinical evidence to support in vivo and clinical studies of VP and other identified compounds to treat IDH1mut gliomas, which may ultimately improve clinical outcomes for patients with this challenging disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。