Hybrid 3D printed integrated microdevice for the determination of copper ions in human body fluids

用于测定人体体液中铜离子的混合3D打印集成微型装置

阅读:7
作者:Shuai Jiang, Jie Zhao, Shifan Zhao, Huizhen Deng, Rui Zhu, Yujian Bai, Guofeng Cui

Abstract

On-site screening of copper ions in body fluid plays a critical role in monitoring human health, especially in heavy pollution areas. In this study, we have developed a hybrid 3D printed integrated microdevice for the determination of copper ions in human body fluids. A fixed and low volume of sample was detected by using the integrated microdevice without any preprocessing. The hybrid channel enables sample uniform mixing and quantitative dilution with buffer solution by inducing the "horseshoe vortex" phenomenon. The electrolytic microcell based on the flow detection system shows a more effective copper ion reaction ratio and, as a result, a better sensitivity. The simulation of the finite element method (FEM) determined the relevant optimum parameters of the hybrid channel and the microcell. The design, fabrication, and detection procedure of the integrated microdevice are here illustrated. The microdevice presented superior detection properties towards copper ions. The calibration curves covered two linear ranges varying from 20 to 100 ppb and 100 to 400 ppb, respectively. The limit of detection was estimated to be 15 ppb (S/N = 3). The relative standard deviation of the peak current measurements was 2.26%. The designed microdevice was further applied to detect copper ions in practical samples (calf serum sample and synthetic human urine sample) using a standard addition method, and the average recovery was found to be 95-104%. The performance of copper ion detection with the integrated microdevice was consistent with that of the inductively coupled plasma mass spectrometry (ICP-MS) in the same practical samples, demonstrating significant practicality in the test of body fluidics. The portable integrated microdevice is an excellent choice for on-site detection and has a promising prospect in the point-of-care testing (POCT) applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。