New Bacillus subtilis Strains Isolated from Prosopis glandulosa Rhizosphere for Suppressing Fusarium Spp. and Enhancing Growth of Gossypium hirsutum L

从牧豆树根际分离的新型枯草芽孢杆菌菌株,用于抑制镰刀菌属并促进陆地棉生长

阅读:10
作者:Ali Abdelmoteleb, Lizbeth Moreno-Ramírez, Benjamín Valdez-Salas, Mahmoud F Seleiman, Salah El-Hendawy, Khalid J Aldhuwaib, Majed Alotaibi, Daniel González-Mendoza

Abstract

Rhizobacteria from desert plants can alleviate biotic stress and suppress plant diseases, and consequently can enhance plant growth. Therefore, the current study was performed to isolate and identify Prosopis glandulosa-associating rhizobacteria based on their antagonistic activity against Fusarium species and plant growth-promoting properties. Three bacterial isolates were identified as Bacillus subtilis: LDA-1, LDA-2, and LDA-3. The molecular analysis suggests the biosynthesis of the bacteriocins subtilisin and subtilosin, as well as the lipopeptide iturin, by these strains. In addition, the antagonistic study by dual-culture assay showed a high efficacy of all B. subtilis strains against phytopathogenic fungi (Fusarium nygamai, F. equisseti, F. solani, F. solani ICADL1, and F. oxysporum ICADL2) with inhibition percentages ranging from 43.3 to 83.5% in comparison to the control. Moreover, atomic force microscopy (AFM) analysis showed significant differences in the cell wall topography of the F. solani ICADL1 among the treated mycelia and untreated control. As a result, these three B. subtilis strains were used as bioinoculants for cotton seedlings infected by F. solani ICADL1 in pot trials, and the results revealed that the bacterial inoculations as an individual or combined with F. solani ICADL1 significantly improved cotton root and stem length, lateral roots, indole acetic acid (IAA), and gibberellic acid (GA3) contents, as well as increased antioxidants, flavonoids, and phenols in comparison to those obtained from healthy and infected control plants. In conclusion, the three bacterial strains of B. subtilis (i.e., LDA-1, LDA-2, and LDA-3) are considered promising tools as biocontrol agents for F. solani and cotton growth promoters, and consequently can be used as bio-ertilizer in sustainable agriculture systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。