Anti-AQP4 autoantibodies promote ATP release from astrocytes and induce mechanical pain in rats

抗 AQP4 自身抗体促进星形胶质细胞释放 ATP 并诱发大鼠机械疼痛

阅读:5
作者:Teruyuki Ishikura #, Makoto Kinoshita #, Mikito Shimizu, Yoshiaki Yasumizu, Daisuke Motooka, Daisuke Okuzaki, Kazuya Yamashita, Hisashi Murata, Shohei Beppu, Toru Koda, Satoru Tada, Naoyuki Shiraishi, Yasuko Sugiyama, Katsuichi Miyamoto, Susumu Kusunoki, Tomoyuki Sugimoto, Atsushi Kumanogoh, Tatsusa

Background

Intractable neuropathic pain is a common symptom of neuromyelitis optica spectrum disorder (NMOSD). However, the underlying mechanism of NMOSD pain remains to be elucidated. In this study, we focused on ATP, which is one of the damage-associated molecular patterns, and also a well-recognized molecule involved in peripheral neuropathic pain.

Conclusion

Anti-AQP4 antibody was shown to induce the release of extracellular ATP from astrocytes. The ATP-mediated development of mechanical allodynia was also suggested in rats treated with anti-AQP4 antibody. Our study indicates the pivotal role of ATP in the pain mechanism of NMOSD.

Methods

We assessed the development of pain symptoms by injecting anti-AQP4 recombinant autoantibodies (rAQP4 IgG) into rat spinal cords. We incubated HEK293 cells expressing AQP4 (HEK-AQP4) and rat astrocytes with rAQP4 IgG and assessed the level of ATP in the supernatant. We performed transcriptome analysis of the spinal cords injected with rAQP4 IgG. Pharmacological inhibition was also applied to investigate the involvement of ATP in the development of neuropathic pain in our rat model. The ATP concentration within the cerebrospinal fluid was examined in patients with NMOSD and other neurological diseases.

Results

Development of mechanical allodynia was confirmed in rAQP4 IgG-treated rats. AQP4-Ab-mediated extracellular ATP release from astrocytes was observed in vitro, and pharmacological inhibition of ATP receptor reversed mechanical allodynia in the rAQP4 IgG-treated rats. Furthermore, transcriptome analysis revealed elevation of gene expressions related to several ATP receptors including P2rx4 and IL1B in the spinal cord of rAQP4 IgG-treated rats. In patients, CSF ATP concentration was significantly higher in the acute and remission phase of NMOSD than in multiple sclerosis or other neurological disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。