A bioluminescence reporter mouse model for visualizing and quantifying CD8+ T cells in vivo

用于体内观察和量化 CD8+ T 细胞的生物发光报告小鼠模型

阅读:8
作者:Kimberly Bettano, Mark Zielstorff, Raquel Sevilla, Ruojing Yang, Heather Zhou, Thomas Rosahl, Jie Zhang-Hoover, Lily Y Moy, Weisheng Zhang

Abstract

Cytotoxic CD8+ T cells are the primary effector cells mediating anti-tumor responses. In vivo monitoring of CD8+ T cells has broad implications for the development of novel cancer therapies. Here we describe the development of a genetically engineered mouse model (GEMM) in which CD8+ T cells are labeled with an optical reporter, enabling in vivo, longitudinal monitoring using bioluminescence imaging (BLI). Firefly luciferase (Luc2), human diphtheria toxin receptor (DTR), and enhanced green fluorescence protein (eGFP) cDNAs are engineered under the CD8α promoter to generate a transgenic mouse line. Luciferase mRNA and CD8α mRNA were generally correlated in various tissues from these mice. Sorted splenic CD8+ T cells, CD4+ T cells and CD3- non-T cells verified that the luciferase signal is specific to CD8+ T cells. In vivo imaging showed that luciferase signal was detected in various immune organs, such as lymph nodes, thymus, and spleen, and the detection was confirmed by ex vivo examination. Administration of diphtheria toxin markedly reduced luciferase signal systemically, confirming the function of the DTR. In the MC38 mouse syngeneic model, we observed significant increases in CD8+ T cells with mDX400 treatment, an anti PD-1 mouse monoclonal antibody that correlated with tumor growth inhibition. This novel reporter GEMM is a valuable drug discovery tool for profiling compounds and understanding mechanisms of action in immunotherapy of cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。