A synthetic ancestral kinesin-13 depolymerizes microtubules faster than any natural depolymerizing kinesin

合成的祖先驱动蛋白-13 比任何天然的解聚驱动蛋白更快地解聚微管

阅读:4
作者:Hannah R Belsham, Hanan M Alghamdi, Nikita Dave, Alexandra J Rathbone, Bill Wickstead, Claire T Friel

Abstract

The activity of a kinesin is largely determined by the approximately 350 residue motor domain, and this region alone is sufficient to classify a kinesin as a member of a particular family. The kinesin-13 family are a group of microtubule depolymerizing kinesins and are vital regulators of microtubule length. Kinesin-13s are critical to spindle assembly and chromosome segregation in both mitotic and meiotic cell division and play crucial roles in cilium length control and neuronal development. To better understand the evolution of microtubule depolymerization activity, we created a synthetic ancestral kinesin-13 motor domain. This phylogenetically inferred ancestral motor domain is the sequence predicted to have existed in the common ancestor of the kinesin-13 family. Here we show that the ancestral kinesin-13 motor depolymerizes stabilized microtubules faster than any previously tested depolymerase. This potent activity is more than an order of magnitude faster than the most highly studied kinesin-13, MCAK and allows the ancestral kinesin-13 to depolymerize doubly stabilized microtubules and cause internal breaks within microtubules. These data suggest that the ancestor of the kinesin-13 family was a 'super depolymerizer' and that members of the kinesin-13 family have evolved away from this extreme depolymerizing activity to provide more controlled microtubule depolymerization activity in extant cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。