Effects of different pre-conditioning exercise on leptin synthesis and its downstream signalling pathway in T2DM rats

不同预处理运动对2型糖尿病大鼠瘦素合成及其下游信号通路的影响

阅读:6
作者:Sen Lin, Yuzhi Hu, Shuqiao Ding, Yazhe Hu

Conclusion

At the early stage of T2DM, pre-conditioning exercise in the form of HIIT was found to inhibit the leptin-mRNA expression in adipose tissue, suppress leptin synthesis, up-regulate AMPK-ACC signaling pathway, and promote lipid decomposition in skeletal muscle tissue. Pre-conditioning of MICT led to the accumulation of FFA and TG in skeletal muscle, likely due to exercise adaptation rather than ectopic deposition of lipids.

Methods

The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection. Two exercise interventions, high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) were performed during the model-building process. One week following the STZ injection, rats were euthanized. Blood, gastrocnemius muscle, and epididymal fat pad were collected. Plasma leptin content was measured by ELISA. The expression of leptin-mRNA in epididymal adipose tissue was measured using RT-qPCR, and its protein expression was detected by a western blot. Leptin, leptin-R, and AMPK (AMP-activated protein kinase) - ACC (Acetyl-CoA carboxylase) expression in gastrocnemius muscle was also detected by western blot. Free fatty acids (FFA) and triglycerides (TG) contents in gastrocnemius muscle were measured using a biochemical assay.

Results

In the HIIT group, glucose tolerance and leptin receptor expression increased, as did the expression and phosphorylation of AMPK protein. At the early stage of T2DM, it increased significantly in the gastrocnemius muscle in the MICT group.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。