N-Acetylcysteine Protects Bladder Epithelial Cells from Bacterial Invasion and Displays Antibiofilm Activity against Urinary Tract Bacterial Pathogens

N-乙酰半胱氨酸保护膀胱上皮细胞免受细菌侵袭,并显示出对抗泌尿道细菌病原体的抗生物膜活性

阅读:5
作者:Arthika Manoharan, Samantha Ognenovska, Denis Paino, Greg Whiteley, Trevor Glasbey, Frederik H Kriel, Jessica Farrell, Kate H Moore, Jim Manos, Theerthankar Das

Conclusions

NAC is a non-toxic, antibiofilm agent in vitro and can prevent cell invasion and IBC formation by uropathogens, thus providing a potentially novel and efficacious treatment for UTIs. When combined with an antibiotic, it may disrupt bacterial biofilms and eliminate residual bacteria.

Methods

An invasion assay was performed in which bacteria were added to bladder epithelial cells (BECs) in presence of NAC and invasion was allowed to occur. Cells were washed with gentamicin, lysed, and plated for enumeration of the intracellular bacterial load. Cytotoxicity was evaluated by exposing BECs to various concentrations of NAC and quantifying the metabolic activity using resazurin at different exposure times. The effect of NAC on the preformed biofilms was also investigated by treating 48 h biofilms for 24 h and enumerating colony counts. Bacteria were stained with propidium iodide (PI) to measure membrane damage.

Results

NAC completely inhibited BEC invasion by multiple E. coli and E. faecalis clinical strains in a dose-dependent manner (p < 0.01). This was also evident when bacterial invasion was visualised using GFP-tagged E. coli. NAC displayed no cytotoxicity against BECs despite its intrinsic acidity (pH ~2.6), with >90% cellular viability 48 h post-exposure. NAC also prevented biofilm formation by E. coli and E. faecalis and significantly reduced bacterial loads in 48 h biofilms when combined with ciprofloxacin. NAC visibly damaged E. coli and E. faecalis bacterial membranes, with a threefold increase in propidium iodide-stained cells following treatment (p < 0.05). Conclusions: NAC is a non-toxic, antibiofilm agent in vitro and can prevent cell invasion and IBC formation by uropathogens, thus providing a potentially novel and efficacious treatment for UTIs. When combined with an antibiotic, it may disrupt bacterial biofilms and eliminate residual bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。