Proteomic characterization of breast cancer xenografts identifies early and late bevacizumab-induced responses and predicts effective drug combinations

乳腺癌异种移植的蛋白质组学表征可识别贝伐单抗诱导的早期和晚期反应并预测有效的药物组合

阅读:7
作者:Evita M Lindholm, Marit Krohn, Sergio Iadevaia, Alexandr Kristian, Gordon B Mills, Gunhild M Mælandsmo, Olav Engebraaten

Conclusions

Treatment with bevacizumab caused compensatory upregulation of several signaling pathways. Targeting such pathways increased the efficacy of antiangiogenic therapy.

Purpose

Neoangiogenesis is an important feature in tumor growth and progression, and combining chemotherapy and antiangiogenic drugs have shown clinical efficacy. However, as treatment-induced resistance often develops, our goal was to identify pathways indicating response and/or evolving resistance to treatment and inhibit these pathways to optimize the treatment strategies. Experimental design: To identify markers of response and/or resistance, reverse-phase protein array (RPPA) was used to characterize treatment-induced changes in a bevacizumab-responsive and a nonresponsive human breast cancer xenograft.

Results

RPPA analysis showed that both tumor models responded to bevacizumab with an early (day 3) upregulation of growth factor receptors and downstream signaling pathways, with persistent mTOR signaling until the end of the in vivo experiment. Adding doxorubicin to bevacizumab showed significant and superior growth inhibition of basal-like tumors, whereas no additive effect was seen in the luminal-like model. The combination treatment corresponded to a continuous late attenuation of mTOR signaling in the basal-like model, whereas the inhibition was temporary in the luminal-like model. Integrating the bevacizumab-induced dynamic changes in protein levels with bioinformatic modeling predicted inhibition of phosphoinositide 3-kinase (PI3K) pathway to increase the efficacy of bevacizumab monotherapy. In vivo experiments combining bevacizumab and the PI3K/mTOR inhibitor BEZ235 confirmed their significant and additive growth-inhibitory effect in the basal-like model. Conclusions: Treatment with bevacizumab caused compensatory upregulation of several signaling pathways. Targeting such pathways increased the efficacy of antiangiogenic therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。