Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling

植物细胞外 ATP。生长和信号传导中生理意义的可视化、定位和分析

阅读:11
作者:Sung-Yong Kim, Mayandi Sivaguru, Gary Stacey

Abstract

Extracellular ATP (eATP) in animals is well documented and known to play an important role in cellular signaling (e.g. at the nerve synapse). The existence of eATP has been postulated in plants; however, there is no definitive experimental evidence for its presence or an explanation as to how such a polar molecule could exit the plant cell and what physiological role it may play in plant growth and development. The presence of eATP in plants (Medicago truncatula) was detected by constructing a novel reporter; i.e. fusing a cellulose-binding domain peptide to the ATP-requiring enzyme luciferase. Application of this reporter to plant roots allowed visualization of eATP in the presence of the substrate luciferin. Luciferase activity could be detected in the interstitial spaces between plant epidermal cells and predominantly at the regions of actively growing cells. The levels of eATP were closely correlated with regions of active growth and cell expansion. Pharmacological compounds known to alter cytoplasmic calcium levels revealed that ATP release is a calcium-dependent process and may occur through vesicular fusion, an important step in the polar growth of actively growing root hairs. Reactive oxygen species (ROS) activity at the root hair tip is not only essential for root hair growth, but also dependent on the cytoplasmic calcium levels. Whereas application of exogenous ATP and a chitin mixture increased ROS activity in root hairs, no changes were observed in response to adenosine, AMP, ADP, and nonhydrolyzable ATP (betagammameATP). However, application of exogenous potato (Solanum tuberosum) apyrase (ATPase) decreased ROS activity, suggesting that cytoplasmic calcium gradients and ROS activity are closely associated with eATP release.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。