T-tubule localization of the inward-rectifier K(+) channel in mouse ventricular myocytes: a role in K(+) accumulation

小鼠心室肌细胞内向整流钾通道的T小管定位:在钾积累中的作用

阅读:9
作者:R B Clark, A Tremblay, P Melnyk, B G Allen, W R Giles, C Fiset

Abstract

1. The properties of the slow inward 'tail currents' (I(tail)) that followed depolarizing steps in voltage-clamped, isolated mouse ventricular myocytes were examined. Depolarizing steps that produced large outward K(+) currents in these myocytes were followed by a slowly decaying inward I(tail) on repolarization to the holding potential. These currents were produced only by depolarizations: inwardly rectifying K(+) currents, I(K1), produced by steps to potentials negative to the holding potential, were not followed by I(tail). 2. For depolarizations of equal duration, the magnitude of I(tail) increased as the magnitude of outward current at the end of the depolarizing step increased. The apparent reversal potential of I(tail) was dependent upon the duration of the depolarizing step, and the reversal potential shifted to more depolarized potentials as the duration of the depolarization was increased. 3. Removal of external Na(+) and Ca(2+) had no significant effect on the magnitude or time course of I(tail). BaCl(2) (0.25 mM), which had no effect on the magnitude of outward currents, abolished I(tail) and I(K1) simultaneously. 4. Accordingly, I(tail) in mouse ventricular myocytes probably results from K(+) accumulation in a restricted extracellular space such as the transverse tubule system (t-tubules). The efflux of K(+) into the t-tubules during outward currents produced by depolarization shifts the K(+) Nernst potential (E(K)) from its 'resting' value (close to -80 mV) to more depolarized potentials. This suggests that I(tail) is produced by I(K1) in the t-tubules and is inward because of the transiently elevated K(+) concentration and depolarized value of E(K) in the t-tubules. 5. Additional evidence for the localization of I(K1) channels in the t-tubules was provided by confocal microscopy using a specific antibody against Kir2.1 in mouse ventricular myocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。