Hybridization-based capture of pathogen mRNA enables paired host-pathogen transcriptional analysis

基于杂交捕获病原体 mRNA 可实现配对宿主-病原体转录分析

阅读:8
作者:Viktoria Betin, Cristina Penaranda, Nirmalya Bandyopadhyay, Rui Yang, Angela Abitua, Roby P Bhattacharyya, Amy Fan, Roi Avraham, Jonathan Livny, Noam Shoresh, Deborah T Hung0

Abstract

Dual transcriptional profiling of host and bacteria during infection is challenging due to the low abundance of bacterial mRNA. We report Pathogen Hybrid Capture (PatH-Cap), a method to enrich for bacterial mRNA and deplete bacterial rRNA simultaneously from dual RNA-seq libraries using transcriptome-specific probes. By addressing both the differential RNA content of the host relative to the infecting bacterium and the overwhelming abundance of uninformative structural RNAs (rRNA, tRNA) of both species in a single step, this approach enables analysis of very low-input RNA samples. By sequencing libraries before (pre-PatH-Cap) and after (post-PatH-Cap) enrichment, we achieve dual transcriptional profiling of host and bacteria, respectively, from the same sample. Importantly, enrichment preserves relative transcript abundance and increases the number of unique bacterial transcripts per gene in post-PatH-Cap libraries compared to pre-PatH-Cap libraries at the same sequencing depth, thereby decreasing the sequencing depth required to fully capture the transcriptional profile of the infecting bacteria. We demonstrate that PatH-Cap enables the study of low-input samples including single eukaryotic cells infected by 1-3 Pseudomonas aeruginosa bacteria and paired host-pathogen temporal gene expression analysis of Mycobacterium tuberculosis infecting macrophages. PatH-Cap can be applied to the study of a range of pathogens and microbial species, and more generally, to lowly-abundant species in mixed populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。