An increased CD25-positive intestinal regulatory T lymphocyte population is dependent upon Cox-2 activity in the Apcmin/+ model

在 Apcmin/+ 模型中,CD25 阳性肠道调节性 T 淋巴细胞群的增加依赖于 Cox-2 活性

阅读:7
作者:O O Faluyi, P Fitch, S E M Howie

Abstract

Only mismatch repair (MMR)-deficient colorectal cancer (CRC) appears to respond well to programmed death (PD)-1 inhibition at the present time. Emerging evidence suggests a role for micro-environmental factors such as CD25+ cells modulating response to PD-1 inhibition. In the ApcMin/+ model of familial adenomatous polyposis (MMR-proficient CRC), increased Cyclooxygenase-2 (Cox-2) expression by cells which include alternatively activated mononuclear phagocytes promotes intestinal tumorigenesis by mechanisms which may include immune suppression. To gain insight into this, we compared regulatory T cell (Treg ) populations between ApcMin/+ and wild-type mice prior to and after the phase of increased intestinal Cox-2-dependent prostaglandin E2 (PGE2 ) production. There was no difference in systemic Treg function or numbers between ApcMin/+ and wild-type mice. However, increased numbers of small intestinal CD25+ Tregs were observed with increased Cox-2 activity in the absence of any difference in the expression of Tgf-β or Tslp between ApcMin/+ and wild-type mice. Cox-2 inhibitor therapy (Celecoxib) reversed the increase in ApcMin/+ intestinal CD25+ Treg numbers, without decreasing numbers of CD25+ systemic Tregs . Forkhead box protein 3 (FoxP3+ ) and Cox-2+ cells were co-localized to the interstitium of adenomas of Apcmin/+ mice. These results suggest selective dependence of an 'activated Treg ' phenotype on paracrine Cox-2 activity in ApcMin/+ small intestine. For therapeutic potential, further studies are required to evaluate the relevance of these findings to human cancer as well as the functional significance of CD25+ intestinal Tregs in cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。