Ratiometric Inclusion of Fibroblasts Promotes Both Castration-Resistant and Androgen-Dependent Tumorigenic Progression in Engineered Prostate Cancer Tissues

成纤维细胞的比例纳入促进工程前列腺癌组织中的去势抵抗性和雄激素依赖性肿瘤发生进展

阅读:6
作者:Nicole L Habbit, Benjamin Anbiah, Joshita Suresh, Luke Anderson, Megan L Davies, Iman Hassani, Taraswi M Ghosh, Michael W Greene, Balabhaskar Prabhakarpandian, Robert D Arnold, Elizabeth A Lipke

Abstract

To investigate the ratiometric role of fibroblasts in prostate cancer (PCa) progression, this work establishes a matrix-inclusive, 3D engineered prostate cancer tissue (EPCaT) model that enables direct coculture of neuroendocrine-variant castration-resistant (CPRC-ne) or androgen-dependent (ADPC) PCa cells with tumor-supporting stromal cell types. Results show that the inclusion of fibroblasts within CRPC-ne and ADPC EPCaTs drives PCa aggression through significant matrix remodeling and increased proliferative cell populations. Interestingly, this is observed to a much greater degree in EPCaTs formed with a small number of fibroblasts relative to the number of PCa cells. Fibroblast coculture also results in ADPC behavior more similar to the aggressive CRPC-ne condition, suggesting fibroblasts play a role in elevating PCa disease state and may contribute to the ADPC to CRPC-ne switch. Bulk transcriptomic analyses additionally elucidate fibroblast-driven enrichment of hallmark gene sets associated with tumorigenic progression. Finally, the EPCaT model clinical relevancy is probed through a comparison to the Cancer Genome Atlas (TCGA) PCa patient cohort; notably, similar gene set enrichment is observed between EPCaT models and the patient primary tumor transcriptome. Taken together, study results demonstrate the potential of the EPCaT model to serve as a PCa-mimetic tool in future therapeutic development efforts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。