Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks

拟南芥缺铁反应的转录分析揭示了保守的过渡金属稳态网络

阅读:8
作者:Thomas J W Yang, Wen-Dar Lin, Wolfgang Schmidt

Abstract

Iron (Fe) deficiency is counteracted by a suite of responses to ensure maintenance of vital processes for which Fe is essential. Here, we report on transcriptional changes upon Fe deficiency, investigated in two Arabidopsis (Arabidopsis thaliana) accessions, Columbia (Col-0) and C24. Functional modules of the Arabidopsis Fe deficiency syndrome were inferred from clustering of Fe-responsive genes according to their coexpression. It was found that the redistribution of transition metals is an integral part of the reduction-based response to Fe starvation. The differential expression of metal transporters under the control of the FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR appeared to reflect an anticipated reaction rather than a response to the actual change in metal distribution. In contrast, the regulation of the zinc transporters ZRT/IRT-LIKE PROTEIN2 (ZIP2), ZIP3, ZIP4, and ZIP9 was dependent on the cellular zinc level, and their regulation by Fe was a secondary effect. Cellular Fe homeostasis was found to be closely coupled to Fe-related processes in the plastids. Using clustered genes as bait in gene-fishing experiments, we were able to attribute potentially important roles for gene candidates that have no previously described function in the Fe deficiency response. These results demonstrate a conceptually novel and integrative view into the regulation and interactions that allow Arabidopsis to adapt to suboptimal Fe availability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。