Brain Amyloid-β Plays an Initiating Role in the Pathophysiological Process of the PS1V97L-Tg Mouse Model of Alzheimer's Disease

脑淀粉样β蛋白在PS1V97L-Tg小鼠阿尔茨海默病模型的病理生理过程中起启动作用

阅读:8
作者:Wei Wang, Lu Lu, Qiao-Qi Wu, Jian-Ping Jia

Abstract

Amyloid-β (Aβ) aggregation, tau hyperphosphorylation, oxidative stress, and neuroinflammation are major pathophysiological events in Alzheimer's disease (AD). However, the relationships among these processes and which first exerts an effect are unknown. In the present study, we investigated age-dependent behavioral changes and the sequential pathological progression from the brain to the periphery in AD transgenic (PS1V97L-Tg) mice and their wild-type littermates. We discovered that the brain Aβ significantly increased at 6 months old, the increased brain Aβ caused memory dysfunction, and the ability of Aβ to induce tau hyperphosphorylation might be due to oxidative stress and neuroinflammatory reactions. The levels of Aβ42, total tau (t-tau), oxidative stress parameters, and proinflammatory cytokines in plasma can be used to differentiate between PS1V97L-Tg mice and their wild-type littermates at different time points. Collectively, our findings support the hypothesis that Aβ is a trigger among these pathophysiological processions and show that plasma biomarkers can reflect the condition of the AD brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。