Hyperglycemia inhibits cardiac stem cell-mediated cardiac repair and angiogenic capacity

高血糖抑制心脏干细胞介导的心脏修复和血管生成能力

阅读:4
作者:André S D Molgat, Everad L Tilokee, Ghazaleh Rafatian, Branka Vulesevic, Marc Ruel, Ross Milne, Erik J Suuronen, Darryl R Davis

Background

The impact of diabetes mellitus on the cardiac regenerative potential of cardiac stem cells (CSCs) is unknown yet critical, given that individuals with diabetes mellitus may well require CSC therapy in the future. Using human and murine CSCs from diabetic cardiac tissue, we tested the hypothesis that hyperglycemic conditions impair CSC function.

Conclusions

Diabetes mellitus reduces the ability of CSCs to repair injured myocardium. Both diabetes mellitus and preconditioning CSCs in high glucose attenuated the proangiogenic capacity of CSCs. Increased expression of glyoxalase-1 restored the proangiogenic capacity of diabetic CSCs, suggesting a means of reversing diabetic CSC dysfunction by interfering with the accumulation of reactive dicarbonyls.

Results

CSCs cultured from the cardiac biopsies of patients with diabetes mellitus (hemoglobin A1c, 10±2%) demonstrated reduced overall cell numbers compared with nondiabetic sourced biopsies (P=0.04). When injected into the infarct border zone of immunodeficient mice 1 week after myocardial infarction, CSCs from patients with diabetes mellitus demonstrated reduced cardiac repair compared with nondiabetic patients. Conditioned medium from CSCs of patients with diabetes mellitus displayed a reduced ability to promote in vitro blood vessel formation (P=0.02). Similarly, conditioned medium from CSCs cultured from the cardiac biopsies of streptozotocin-induced diabetic mice displayed impaired angiogenic capacity (P=0.0008). Somatic gene transfer of the methylglyoxal detoxification enzyme, glyoxalase-1, restored the angiogenic capacity of diabetic CSCs (diabetic transgenic versus nondiabetic transgenic; P=0.8). Culture of nondiabetic murine cardiac biopsies under high (25 mmol/L) glucose conditions reduced CSC yield (P=0.003), impaired angiogenic (P=0.02) and chemotactic (P=0.003) response, and reduced CSC-mediated cardiac repair (P<0.05). Conclusions: Diabetes mellitus reduces the ability of CSCs to repair injured myocardium. Both diabetes mellitus and preconditioning CSCs in high glucose attenuated the proangiogenic capacity of CSCs. Increased expression of glyoxalase-1 restored the proangiogenic capacity of diabetic CSCs, suggesting a means of reversing diabetic CSC dysfunction by interfering with the accumulation of reactive dicarbonyls.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。