Characterization of Phytochrome Interacting Factors from the Moss Physcomitrella patens Illustrates Conservation of Phytochrome Signaling Modules in Land Plants

苔藓植物小立碗藓中光敏色素相互作用因子的表征表明陆地植物中光敏色素信号模块的保守性

阅读:6
作者:Anja Possart, Tengfei Xu, Inyup Paik, Sebastian Hanke, Sarah Keim, Helen-Maria Hermann, Luise Wolf, Manuel Hiß, Claude Becker, Enamul Huq, Stefan A Rensing, Andreas Hiltbrunner

Abstract

Across the plant kingdom, phytochrome (PHY) photoreceptors play an important role during adaptive and developmental responses to light. In Arabidopsis thaliana, light-activated PHYs accumulate in the nucleus, where they regulate downstream signaling components, such as phytochrome interacting factors (PIFs). PIFs are transcription factors that act as repressors of photomorphogenesis; their inhibition by PHYs leads to substantial changes in gene expression. The nuclear function of PHYs, however, has so far been investigated in only a few non-seed plants. Here, we identified putative target genes of PHY signaling in the moss Physcomitrella patens and found light-regulated genes that are putative orthologs of PIF-controlled genes in Arabidopsis. Phylogenetic analyses revealed that an ancestral PIF-like gene was already present in streptophyte algae, i.e., before the water-to-land transition of plants. The PIF homologs in the genome of P. patens resemble Arabidopsis PIFs in their protein domain structure, molecular properties, and physiological effects, albeit with notable differences in the motif-dependent PHY interaction. Our results suggest that P. patens PIFs are involved in PHY signaling. The PHY-PIF signaling node that relays light signals to target genes has been largely conserved during land plant evolution, with evidence of lineage-specific diversification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。