Infrared and 2-Dimensional Correlation Spectroscopy Study of the Effect of CH3NH3PbI3 and CH3NH3SnI3 Photovoltaic Perovskites on Eukaryotic Cells

红外和二维相关光谱研究 CH3NH3PbI3 和 CH3NH3SnI3 光伏钙钛矿对真核细胞的影响

阅读:6
作者:Luca Quaroni, Iness Benmessaoud, Bertrand Vileno, Endre Horváth, László Forró

Abstract

We studied the effect of the exposure of human A549 and SH-SY5Y cell lines to aqueous solutions of organic/inorganic halide perovskites CH3NH3PbI3 (MAPbI3) and CH3NH3SnI3 (MASnI3) at the molecular level by using Fourier transform infrared microspectroscopy. We monitored the infrared spectra of some cells over a few days following exposure to the metals and observed the spectroscopic changes dominated by the appearance of a strong band at 1627 cm-1. We used Infrared (IR) mapping to show that this change was associated with the cell itself or the cellular membrane. It is unclear whether the appearance of the 1627 cm-1 band and heavy metal exposure are related by a direct causal relationship. The spectroscopic response of exposure to MAPbI3 and MASnI3 was similar, indicating that it may arise from a general cellular response to stressful environmental conditions. We used 2D correlation spectroscopy (2DCOS) analysis to interpret spectroscopic changes. In a novel application of the method, we demonstrated the viability of 2DCOS for band assignment in spatially resolved spectra. We assigned the 1627 cm-1 band to the accumulation of an abundant amide or amine containing compound, while ruling out other hypotheses. We propose a few tentative assignments to specific biomolecules or classes of biomolecules, although additional biochemical characterization will be necessary to confirm such assignments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。