Light-induced Conductance Switching in Photomechanically Active Carbon Nanotube-Polymer Composites

光机械活性碳纳米管-聚合物复合材料中的光诱导电导切换

阅读:10
作者:V Schneider, O Polonskyi, T Strunskus, M Elbahri, F Faupel

Abstract

Novel, optically responsive devices with a host of potential applications have been demonstrated by coupling carbon nanomaterials with photochromic molecules. For light-induced conductance switching in particular, we have recently shown that carbon nanotube-polymer nanocomposites containing azobenzene are very attractive and provide stable and non-degradable changes in conductivity over time at standard laboratory conditions. In these composites, the photoswitching mechanisms are based on light-induced changes in electronic properties and related to the Pool-Frenkel conduction mechanism. However, no link between conductivity switching and the molecular motion of azobenzene chromophores could be found due to application of high elastic modulus polymer matrices. Here we report on single wall carbon nanotube-polymer nanocomposites with a soft polycaprolactone polymer host. Such a system clearly shows the transfer of light-induced, nano-sized molecular motion to macroscopic thickness changes of the composite matrix. We demonstrate that these photomechanical effects can indeed overshadow the electronic effects in conductivity switching behavior and lead to a reversion of the conductivity switching direction near the percolation threshold.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。