Arabidopsis cockayne syndrome A-like proteins 1A and 1B form a complex with CULLIN4 and damage DNA binding protein 1A and regulate the response to UV irradiation

拟南芥Cockayne综合征A样蛋白1A和1B与CULLIN4形成复合物,损伤DNA结合蛋白1A,并调节对紫外线照射的反应

阅读:7
作者:Caiguo Zhang, Huiping Guo, Jun Zhang, Guangqin Guo, Karen S Schumaker, Yan Guo

Abstract

In plants, as in animals, DNA is constantly subject to chemical modification. UV-B irradiation is a major genotoxic agent and has significant effects on plant growth and development. Through forward genetic screening, we identified a UV-B-sensitive mutant (csaat1a-3) in Arabidopsis thaliana, in which expression of CSAat1A, encoding a Cockayne Syndrome A-like protein, is reduced due to insertion of a T-DNA in the promoter region. Arabidopsis lacking CSAat1A or its homolog CSAat1B is more sensitive to UV-B and the genotoxic drug methyl methanesulfonate and exhibits reduced transcription-coupled repair activity. Yeast two-hybrid analysis indicated that both CSAat1A and B interact with DDB1A (UV-Damage DNA Binding Protein1). Coimmunoprecipitation assays demonstrated that CSAat1A and B associate with the CULLIN4 (CUL4)-DDB1A complex in Arabidopsis. A split-yellow fluorescent protein assay showed that this interaction occurs in the nucleus, consistent with the idea that the CUL4-DDB1A-CSA complex functions as a nuclear E3 ubiquitin ligase. CSAat1A and B formed heterotetramers in Arabidopsis. Taken together, our data suggest that the plant CUL4-DDB1A(CSAat1A and B) complex represents a unique mechanism to promote ubiquitination of substrates in response to DNA damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。