Effect of quercetin, genistein and kaempferol on glutathione and glutathione-redox cycle enzymes in 3T3-L1 preadipocytes

槲皮素、染料木黄酮和山奈酚对3T3-L1前脂肪细胞中谷胱甘肽和谷胱甘肽氧化还原循环酶的影响

阅读:9
作者:William Y Boadi, Paul K Amartey, Andrew Lo

Conclusion

These findings suggest that the flavonoids play an important role in diminishing oxidation-induced biochemical damages. The enhancement of these enzymes may increase the resistance of the organism against oxidative damage by the Fenton's pathway.

Methods

3T3-L1 preadipocytes were exposed to each flavonoid and GSH at concentrations of 0, 5, 10, 15, 20 and 25 µM and then GSH levels and activities of glutathione peroxidase (GSH-Px), glutathione reductase (GSH-Rx) and superoxide dismutase (SOD) were measured.

Objective

Many studies have shown that cellular redox potential is largely determined by glutathione (GSH), which accounts for more than 90% of cellular nonprotein thiols. The aim of this study was to delineate the effect of three flavonoids - namely, quercetin, kaempferol and genistein - and exogenous GSH on oxidative damage by the Fenton's pathway through the GSH and GSH-redox cycle enzymes in 3T3-L1 cells. Materials and

Results

Exogenous GSH did not have significant effect on intracellular GSH although slight decrease was observed at 15-25 µM doses. However, each of the three flavonoids sustained intracellular GSH levels in the cells as compared to the respective controls. Quercetin had the most profound effect, followed by kaempferol and genistein in that order. GSH-Px, GSH-Rx and SOD activities increased for all the doses tested compared to their respective controls. Again, quercetin had the maximum increase in enzyme activities followed by kaempferol and genistein for the enzymes tested.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。