Iron-Gallic Acid Peptide Nanoparticles as a Versatile Platform for Cellular Delivery with Synergistic ROS Enhancement Effect

铁-没食子酸肽纳米粒子作为具有协同 ROS 增强作用的细胞输送多功能平台

阅读:3
作者:Faqian Shen, Yi Lin, Miriam Höhn, Xianjin Luo, Markus Döblinger, Ernst Wagner, Ulrich Lächelt

Abstract

Cytosolic delivery of peptides is of great interest owing to their biological functions, which could be utilized for therapeutic applications. However, their susceptibility to enzymatic degradation and multiple cellular barriers generally hinders their clinical application. Integration into nanoparticles, which can enhance the stability and membrane permeability of bioactive peptides, is a promising strategy to overcome extracellular and intracellular obstacles. Herein, we present a versatile platform for the cellular delivery of various cargo peptides by integration into metallo-peptidic coordination nanoparticles. Both termini of cargo peptides were conjugated with gallic acid (GA) to assemble GA-modified peptides into nanostructures upon coordination of Fe(III). Initial pre-complexation of Fe(III) by poly-(vinylpolypyrrolidon) (PVP) as a template favored the formation of nanoparticles, which are able to deliver the peptides into cells efficiently. Iron-gallic acid peptide nanoparticles (IGPNs) are stable in water and are supposed to generate reactive oxygen species (ROS) from endogenous H2O2 in cells via the Fenton reaction. The strategy was successfully applied to an exemplary set of peptide sequences varying in length (1-7 amino acids) and charge (negative, neutral, positive). To confirm the capability of transporting bioactive cargos into cells, pro-apoptotic peptides were integrated into IGPNs, which demonstrated potent killing of human cervix carcinoma HeLa and murine neuroblastoma N2a cells at a 10 µM peptide concentration via the complementary mechanisms of peptide-triggered apoptosis and Fe(III)-mediated ROS generation. This study demonstrates the establishment of IGPNs as a novel and versatile platform for the assembly of peptides into nanoparticles, which can be used for cellular delivery of bioactive peptides combined with intrinsic ROS generation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。