A novel uORF regulates folliculin to promote cell growth and lysosomal biogenesis during cardiac stress

一种新型 uORF 调节卵泡素以促进心脏应激期间的细胞生长和溶酶体生物合成

阅读:8
作者:Maja Bencun, Laura Spreyer, Etienne Boileau, Jessica Eschenbach, Norbert Frey, Christoph Dieterich, Mirko Völkers

Abstract

Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling. The tumor suppressor folliculin (FLCN) is part of the network regulating non-canonical mTORC1 activity. FLCN activates mTORC1 by functioning as a guanosine triphosphatase activating protein (GAP). Our work has identified a regulatory upstream open reading frame (uORF) localized in the 5'UTR of the FLCN mRNA. These small genetic elements are important regulators of protein expression. They are particularly important for the regulation of stress-responsive protein synthesis. We have studied the relevance of the FLCN uORF in the regulation of FLCN translation. We show that FLCN downregulation through the uORF is linked to cardiomyocyte growth and increased lysosomal activity. In summary, we have identified uORF-mediated control of RNA translation as another layer of regulation in the complex molecular network controlling cardiomyocyte hypertrophy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。