Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans

不对称二甲基精氨酸 (ADMA) 升高和精氨酸酶上调导致大鼠和病态肥胖人类出现与胰岛素抵抗相关的内皮功能障碍

阅读:7
作者:Mariam El Assar, Javier Angulo, Marta Santos-Ruiz, Juan Carlos Ruiz de Adana, María Luz Pindado, Alberto Sánchez-Ferrer, Alberto Hernández, Leocadio Rodríguez-Mañas

Abstract

Key points: The presence of insulin resistance (IR) is determinant for endothelial dysfunction associated with obesity. Although recent studies have implicated the involvement of mitochondrial superoxide and inflammation in the defective nitric oxide (NO)-mediated responses and subsequent endothelial dysfunction in IR, other mechanisms could compromise this pathway. In the present study, we assessed the role of asymmetric dimethylarginine (ADMA) and arginase with respect to IR-induced impairment of endothelium-dependent vasodilatation in human morbid obesity and in a non-obese rat model of IR. We show that both increased ADMA and up-regulated arginase are determinant factors in the alteration of the l-arginine/NO pathway associated with IR in both models and also that acute treatment of arteries with arginase inhibitor or with l-arginine significantly alleviate endothelial dysfunction. These results help to expand our knowledge regarding the mechanisms of endothelial dysfunction that are related to obesity and IR and establish potential therapeutic targets for intervention. Abstract: Insulin resistance (IR) is determinant for endothelial dysfunction in human obesity. Although we have previously reported the involvement of mitochondrial superoxide and inflammation, other mechanisms could compromise NO-mediated responses in IR. We evaluated the role of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA) and arginase with respect to IR-induced impairment of l-arginine/NO-mediated vasodilatation in human morbid obesity and in a non-obese rat model of IR. Bradykinin-induced vasodilatation was evaluated in microarteries derived from insulin-resistant morbidly obese (IR-MO) and non-insulin-resistant MO (NIR-MO) subjects. Defective endothelial vasodilatation in IR-MO was improved by l-arginine supplementation. Increased levels of ADMA were detected in serum and adipose tissue from IR-MO. Serum ADMA positively correlated with IR score and negatively with pD2 for bradykinin. Gene expression determination by RT-PCR revealed not only the decreased expression of ADMA degrading enzyme dimethylarginine dimethylaminohydrolase (DDAH)1/2 in IR-MO microarteries, but also increased expression of arginase-2. Arginase inhibition improved endothelial vasodilatation in IR-MO. Analysis of endothelial vasodilatation in a non-obese IR model (fructose-fed rat) confirmed an elevation of circulating and aortic ADMA concentrations, as well as reduced DDAH aortic content and increased aortic arginase activity in IR. Improvement of endothelial vasodilatation in IR rats by l-arginine supplementation and arginase inhibition provided functional corroboration. These results demonstrate that increased ADMA and up-regulated arginase contribute to endothelial dysfunction as determined by the presence of IR in human obesity, most probably by compromising arginine availability. The results provide novel insights regarding the mechanisms of endothelial dysfunction related to obesity and IR and establish potential therapeutic targets for intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。