A thermo-mechanically loaded rotating FGM cylindrical pressure vessels under parabolic changing properties: An analytical and numerical analysis

抛物线变化特性下热机械加载旋转 FGM 圆柱形压力容器:解析和数值分析

阅读:6
作者:P Das, A Benslimane, M A Islam, D Mondal, M S Nazim

Abstract

This study aims to develop an exact analytical solution for steady-state thermo-mechanical stress in a functionally graded (FG) thick-walled cylindrical vessel. The cylinder is subjected to combined rotational speed and internal pressures while the thermal load is with convective and radiative boundary conditions. The dimensionless governing equations and boundary conditions, represented as a quartic equation, are derived and solved using Ferrari's method. The temperature, displacement, and stress fields across the thick-walled cylindrical vessel are calculated by finding the roots of the quartic equation. In order to investigate the accuracy of the exact analytical solution, a numerical model is constructed based on a standard Galerkin discretization approach of the finite element method (FEM). The analytical solutions and the results obtained through FEM show a high level of agreement. Furthermore, the study analyzes the effects of material parameters on temperature, displacement, and stress fields. Displacement, temperature, and stress fields are presented in the form of dimensionless graphs along the radial direction. For the considered parametric studies, results revealed that parabolic grading is beneficial than conventional grading. This study reveals that for the thermal loading, the maximum temperature, displacement, and tangential stress decrease for the parabolic grading. A similar but lower value of temperature, displacement, and tangential stress is also observed in the case of thermomechanical loading. This study is expected to assist in the assessment of the reliability of load calculations and contribute to the overall durability of pressure vessels. The results obtained from this study can provide valuable insights into thermo-elasticity and the thermo-mechanical behavior of thick-walled cylindrical vessels and can aid in the design and optimization of such systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。