Conclusion
Our findings suggest that irisin reduced myocardial arrhythmia induced by I/R injury in diabetic rats by modulating the interaction of mitochondrial biogenesis and ER stress proteins and inhibiting the pyroptosis pathway. These findings provide a promising strategy for managing myocardial arrhythmia in diabetic patients, but supplementary studies are needed to confirm the clinical efficacy of irisin in these patients.
Methods
Thirty high-fat diet-induced diabetic rats were subjected to I/R injury and myocardial arrhythmia. Irisin (0.5 μg/kg/day) was injected intraperitoneally before induction of I/R injury. Electrocardiography was used to measure the incidence and severity of ventricular arrhythmias. ELISA and western blotting analyses were employed to quantify the expression of mitochondrial biogenesis, ER stress, and pyroptosis-related proteins in ischemic myocardium.
Results
Irisin treatment in diabetic rats significantly decreased the lactate dehydrogenase level and the number and severity of arrhythmia induced by I/R injury. Irisin up-regulated the expression of mitochondrial biogenesis-related proteins while down-regulating the expression of ER stress and pyroptosis-related proteins. Furthermore, the inhibition of mitochondrial quality control by mdivi-1 significantly abolished the cardioprotective effect of irisin.
