Enzyme Selection and Hydrolysis under Optimal Conditions Improved Phenolic Acid Solubility, and Antioxidant and Anti-Inflammatory Activities of Wheat Bran

酶的选择和在最佳条件下的水解提高了麦麸的酚酸溶解度以及抗氧化和抗炎活性

阅读:6
作者:Sara Bautista-Expósito, Irene Tomé-Sánchez, Ana Belén Martín-Diana, Juana Frias, Elena Peñas, Daniel Rico, María Jesús García Casas, Cristina Martínez-Villaluenga

Abstract

Valorization of wheat bran (WB) into new high-value products is of great interest within the framework of sustainability and circular economy. In the present study, we utilized a multi-step approach to extract nutraceutical compounds (phenolic acids) from WB and improved its antioxidant and anti-inflammatory properties through using sequential hydrothermal and enzymatic hydrolysis. Thirteen commercial glycosidases differing in their specific activity were screened and compared for hydrolytic efficiency to release monosaccharides, ferulic acid, and diferulic acid. Ultraflo XL was selected as the desired enzyme treatment on the basis of its higher WB solubilization, as well as its monosaccharide and phenolic acids yields. The relationships between better hydrolytic performance of Ultraflo XL and its particular activity profile were established. To determine the optimum conditions for Ultraflo XL treatment, we tested different factors (solvent pH, incubation temperature, and time) under 15 experiments. A multicomponent analysis (MCA), including central composite design, model fitness, regression coefficients, analysis of variance, 3D response curves, and desirability, was used for processing optimization. A beneficial effect of autoclave treatment on the release of phenolic compounds was also evidenced. The results of MCA showed involvement of linear, quadratic, and interactive effects of processing factors, although solvent pH was the main determinant factor, affecting enzymatic extraction of phenolics and bioactivity of hydrolysates. As compared to control WB, under optimized conditions (47 °C, pH = 4.4, and 20.8 h), WB hydrolysates showed 4.2, 1.5, 2, and 3 times higher content of ferulic acid (FA) and capacity to scavenge oxygen radicals, chelate transition metals, and inhibit monocyte chemoattractant protein-1 secretion in macrophages, respectively. These approaches could be applied for the sustainable utilization of WB, harnessing its nutraceutical potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。