Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy

抗血管内皮生长因子治疗期间胶质母细胞瘤耐药和侵袭的介质

阅读:4
作者:Agda K Lucio-Eterovic, Yuji Piao, John F de Groot

Conclusions

Collectively, these findings reinforce the importance of VEGF in regulating tumor invasion and identify potential mediators of resistance to targeted VEGF therapy. These results will be important for developing novel combination therapies to overcome this resistance phenotype.

Purpose

Vascular endothelial growth factor (VEGF) has been identified as a critical regulator of angiogenesis. Currently, several different strategies are being used to target the VEGF-VEGF receptor signal transduction pathway in glioblastoma. Although anti-VEGF therapy seems be effective in normalizing abnormal tumor vasculature, leading to an enhanced response to radiation and chemotherapy, tumors eventually become resistant to the therapy and adopt a highly infiltrative and invasive phenotype. Experimental design: In the present study, we evaluated the effects of anti-VEGF therapy (bevacizumab) on glioblastoma invasion both in vitro and in vivo and evaluated the angiogenesis- and invasion-related mediators of developed resistance to this therapy.

Results

We found that glioblastoma tumors escaped from antiangiogenic treatment by (a) reactivating angiogenesis through up-regulation of other proangiogenic factors and (b) invading normal brain areas, which was seen in association with up-regulation of matrix metalloproteinase (MMP)-2, MMP-9, and MMP-12; secreted protein, acidic, cysteine-rich; and tissue inhibitor of metalloproteinase 1. In addition to the paracrine effects of VEGF on endothelial cells, autocrine VEGF signaling seemed to regulate glioblastoma invasion because anti-VEGF therapy increased tumor invasiveness in vitro. Conclusions: Collectively, these findings reinforce the importance of VEGF in regulating tumor invasion and identify potential mediators of resistance to targeted VEGF therapy. These results will be important for developing novel combination therapies to overcome this resistance phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。