Resveratrol Reverses Thioacetamide-Induced Renal Assault with respect to Oxidative Stress, Renal Function, DNA Damage, and Cytokine Release in Wistar Rats

白藜芦醇可逆转硫代乙酰胺引起的 Wistar 大鼠肾脏损伤,包括氧化应激、肾功能、DNA 损伤和细胞因子释放

阅读:6
作者:Seema Zargar, Mona Alonazi, Humaira Rizwana, Tanveer A Wani

Background

Thioacetamide (TAA), a class 2B-type carcinogen, is a potent toxicant. Toxicities caused by this compound in various tissues due to oxidative stress, increase of proinflammatory markers, and apoptosis have been reported; however, reports on kidney toxicity are negligible. Resveratrol (RSV), on the other hand, has demonstrated antioxidant and anti-inflammatory effects in different cases. Resveratrol's protective effects against TAA kidney toxicity were investigated in four rat groups. Methodology: Four groups of rats were studied as follows (n = 8): control group, where rats were fed normal diet and water; TAA group, where rats received 0.3% TAA in water for two weeks; RSV group, where rats received 10 mg/kg body weight (bw) of RSV as oral suspension for two weeks; and treated group, where rats orally received 10 mg/kg bw RSV and simultaneously received 0.3% TAA for two weeks. Kidney homogenates from all groups were analyzed for cytokine release (IL-4, TNF-α, and IFN-γ) and oxidative stress (lipid peroxidation, catalase, and 8-OHdG). The serum of rats was analyzed for the quantification of renal function markers (blood urea nitrogen (BUN), creatinine, and creatine kinase). Result: A significant increase in the renal function markers (BUN, 240%; creatinine, 187%; and creatine kinase, 117%), oxidative stress parameters (lipid peroxidation, 192% increase; catalase, 30.5% decrease), cytokines (IL-4, 120%; TNF-α, 129%; and IFN-γ, 133%), and DNA damage was observed in the TAA-treated group. All changes were significantly reversed in the group treated with RSV and TAA (P < 0.05) in combination, with no significant difference compared to the control group.

Conclusion

We conclude that resveratrol shows protection against TAA toxicity in rat kidney with respect to DNA damage, oxidative stress, renal function and cytokine release.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。