Optimization of Enzymolysis Modification Conditions of Dietary Fiber from Bayberry Pomace and Its Structural Characteristics and Physicochemical and Functional Properties

杨梅渣膳食纤维酶解改性条件优化及其结构特征和理化功能特性

阅读:6
作者:Zhaolin Zhang, Qin Ruan, Xiaoming Sun, Jianfeng Yuan

Abstract

Bayberry pomace, a nutrient-rich material abundant in dietary fiber (DF), has historically been underutilized due to a lack of thorough research. This study aimed to investigate the physicochemical and functional properties of the DF. Ultrasonic enzymatic treatment was performed to extract the total DF, which was then optimized to produce modified soluble dietary fiber (MSDF) and insoluble dietary fiber (MIDF). The optimized conditions yielded 15.14% of MSDF with a water-holding capacity (WHC) of 54.13 g/g. The DFs were evaluated for their structural, physicochemical, and functional properties. The MSDF showed a higher (p < 0.05) WHC, oil-holding capacity (OHC), swelling capacity (SC), cation exchange capacity (CEC), and glucose adsorption capacity (GAC) (about 14.15, 0.88, 1.23, 1.22, and 0.34 times) compared to the DF. Additionally, the MSDF showed strong, superior radical scavenging and blood sugar-lowering capabilities, with a more porous surface morphology. A Fourier-transform infrared (FT-IR) spectroscopy analysis indicated that enzymatic modification degraded the cellulose and hemicellulose, reducing the DF crystallinity. Overall, the results demonstrated that cellulase hydrolysis could effectively improve the physicochemical and functional properties of DF, thereby paving the way for its development into functional food products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。