Assessment of Phenanthrene Degradation Potential by Plant-Growth-Promoting Endophytic Strain Pseudomonas chlororaphis 23aP Isolated from Chamaecytisus albus (Hacq.) Rothm

评估从 Chamaecytisus albus (Hacq.) Rothm 中分离的促进植物生长的内生菌株 Pseudomonas chlororaphis 23aP 降解菲的潜力

阅读:6
作者:Magdalena Anna Karaś, Sylwia Wdowiak-Wróbel, Monika Marek-Kozaczuk, Wojciech Sokołowski, Krystsina Melianchuk, Iwona Komaniecka

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are common xenobiotics that are detrimental to the environment and human health. Bacterial endophytes, having the capacity to degrade PAHs, and plant growth promotion (PGP) may facilitate their biodegradation. In this study, phenanthrene (PHE) utilization of a newly isolated PGP endophytic strain of Pseudomonas chlororaphis 23aP and factors affecting the process were evaluated. The data obtained showed that strain 23aP utilized PHE in a wide range of concentrations (6-100 ppm). Ethyl-acetate-extractable metabolites obtained from the PHE-enriched cultures were analyzed by gas chromatography-mass spectrometry (GC-MS) and thin-layer chromatography (HPTLC). The analysis identified phthalic acid, 3-(1-naphthyl)allyl alcohol, 2-hydroxybenzalpyruvic acid, α-naphthol, and 2-phenylbenzaldehyde, and allowed us to propose that the PHE degradation pathway of strain 23aP is initiated at the 1,2-, 3,4-carbon positions, while the 9,10-C pathway starts with non-enzymatic oxidation and is continued by the downstream phthalic pathway. Moreover, the production of the biosurfactants, mono- (Rha-C8-C8, Rha-C10-C8:1, Rha-C12:2-C10, and Rha-C12:1-C12:1) and dirhamnolipids (Rha-Rha-C8-C10), was confirmed using direct injection-electrospray ionization-mass spectrometry (DI-ESI-MS) technique. Changes in the bacterial surface cell properties in the presence of PHE of increased hydrophobicity were assessed with the microbial adhesion to hydrocarbons (MATH) assay. Altogether, this suggests the strain 23aP might be used in bioaugmentation-a biological method supporting the removal of pollutants from contaminated environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。