Interaction of polyethylene glycol with cytochrome c investigated via in vitro and in silico approaches

通过体外和计算机模拟方法研究聚乙二醇与细胞色素 c 的相互作用

阅读:5
作者:Zahoor Ahmad Parray, Faizan Ahmad, Mohamed F Alajmi, Afzal Hussain, Md Imtaiyaz Hassan, Asimul Islam

Abstract

One of the significant proteins that have attracted research groups due to virtue of being a potent selective anticancer drug target and property of triggering apoptosis upon release in cytoplasm is cytochrome c (cyt c). The mechanical transformations due to the macromolecular crowding in membrane in the mammalian cell are proposed to be useful inductors of changes in volume. It is very interesting to know that mitochondrial function were observed to be improved by polyethylene glycol (PEG) interaction, which in turn inhibits the cyt c (a pro-apoptotic cell death factor). In this work, the effect of polyethylene glycol of molecular weight 4 kilo Dalton (PEG 4 kDa) was investigated to highlight the structural transformations (tertiary and secondary structure) in cyt c using a choice of spectroscopic techniques (including UV-Vis absorption, near-UV, far-UV and Soret circular dichroism and fluorescence spectroscopy), which shows noteworthy shifts in the secondary and tertiary structures at higher concentrations of PEG 4 kDa with small changes in the heme-globular interactions. The size distribution changes of native protein treated with various concentrations of the crowder were observed and analyzed by dynamic light scattering (DLS). The interaction studies of the crowder with the protein was observed and analyzed by FTIR, isothermal titration calorimetry, time resolved fluorescence and molecular docking. The investigations suggested that the structural changes in the protein occurred due to soft interactions of PEG 4 kDa, which usually destabilizes proteins. The experimental evidence in this study proposed that crowding could be another approach to mechanical super-competition and free of certain markers that could aid in the identification and control of various diseases. This study suggests that crowders at specific concentrations, which softly interact with proteins, can be exploited as remedy for various diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。