In vivo enrichment of busulfan-resistant germ cells for efficient production of transgenic avian models

体内富集白消安抗性生殖细胞以高效生产转基因禽类模型

阅读:5
作者:Young Min Kim #, Kyung Je Park #, Jin Se Park, Kyung Min Jung, Jae Yong Han

Abstract

Most transgenic animals are generated using a genome-modified stem cell system and genome modification directly in embryos. Although this system is well-established in the development of transgenic animals, donor cell-derived transgenic animal production is inefficient in some cases. Especially in avian models such as chickens, the efficiency of transgenic animal production through primordial germ cells (PGCs) is highly variable compared with embryonic manipulation of mammalian species. Because germ cell and germline-competent stem cell-mediated systems that contain the transgene are enriched only at the upstream level during cell cultivation, the efficiency of transgenic animal production is unreliable. Therefore, we developed an in vivo selection model to enhance the efficiency of transgenic chicken production using microsomal glutathione-S-transferase II (MGSTII)-overexpressing PGCs that are resistant to the alkylating agent busulfan, which induces germ cell-specific cytotoxicity. Under in vitro conditions, MGSTII-tg PGCs were resistant to 1 μM busulfan, which was highly toxic to wild-type PGCs. In germline chimeric roosters, transgene-expressing germ cells were dominantly colonized in the recipient testes after busulfan exposure compared with non-treated germline chimera. In validation of germline transmission, donor PGC-derived progeny production efficiency was 94.68%, and the transgene production rate of heterozygous transgenic chickens was significantly increased in chickens that received 40 mg/kg busulfan (80.33-95.23%) compared with that of non-treated germline chimeras (51.18%). This system is expected to significantly improve the efficiency of generating transgenic chickens and other animal species by increasing the distribution of donor cells in adult testes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。