Penicillin-binding proteins regulate multiple steps in the polarized cell division process of Chlamydia

青霉素结合蛋白调节衣原体极化细胞分裂过程中的多个步骤

阅读:10
作者:John V Cox, Yasser Mohamed Abdelrahman, Scot P Ouellette

Abstract

Chlamydia trachomatis serovar L2 and Chlamydia muridarum, which do not express FtsZ, undergo polarized cell division. During division, peptidoglycan assembles at the pole of dividing Chlamydia trachomatis cells where daughter cell formation occurs, and peptidoglycan regulates at least two distinct steps in the polarized division of Chlamydia trachomatis and Chlamydia muridarum. Cells treated with inhibitors that prevent peptidoglycan synthesis or peptidoglycan crosslinking by penicillin-binding protein 2 (PBP2) are unable to initiate polarized division, while cells treated with inhibitors that prevent peptidoglycan crosslinking by penicillin-binding protein 3 (PBP3/FtsI) initiate polarized division, but the process arrests at an early stage of daughter cell growth. Consistent with their distinct roles in polarized division, peptidoglycan organization is different in cells treated with PBP2 and PBP3-specific inhibitors. Our analyses indicate that the sequential action of PBP2 and PBP3 drives changes in peptidoglycan organization that are essential for the polarized division of these obligate intracellular bacteria. Furthermore, the roles we have characterized for PBP2 and PBP3 in regulating specific steps in chlamydial cell division have not been described in other bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。