Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death

斑马鱼机械感觉毛细胞死亡的遗传和化学调节剂的鉴定

阅读:5
作者:Kelly N Owens, Felipe Santos, Brock Roberts, Tor Linbo, Allison B Coffin, Anna J Knisely, Julian A Simon, Edwin W Rubel, David W Raible

Abstract

Inner ear sensory hair cell death is observed in the majority of hearing and balance disorders, affecting the health of more than 600 million people worldwide. While normal aging is the single greatest contributor, exposure to environmental toxins and therapeutic drugs such as aminoglycoside antibiotics and antineoplastic agents are significant contributors. Genetic variation contributes markedly to differences in normal disease progression during aging and in susceptibility to ototoxic agents. Using the lateral line system of larval zebrafish, we developed an in vivo drug toxicity interaction screen to uncover genetic modulators of antibiotic-induced hair cell death and to identify compounds that confer protection. We have identified 5 mutations that modulate aminoglycoside susceptibility. Further characterization and identification of one protective mutant, sentinel (snl), revealed a novel conserved vertebrate gene. A similar screen identified a new class of drug-like small molecules, benzothiophene carboxamides, that prevent aminoglycoside-induced hair cell death in zebrafish and in mammals. Testing for interaction with the sentinel mutation suggests that the gene and compounds may operate in different pathways. The combination of chemical screening with traditional genetic approaches is a new strategy for identifying drugs and drug targets to attenuate hearing and balance disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。