Designing an experimental method for assessing biocompatibility of circuit coatings using biomarkers for platelet activation during cardiopulmonary bypass

设计一种实验方法,利用心肺分流过程中血小板活化的生物标志物来评估电路涂层的生物相容性

阅读:12
作者:Meghal Sancheti, Mitchell Rentschler, Charlotte Bolch, Weidang Li, Katelyn Necco, Thomas Rath, Mitra Esfandiarei, Nathaniel Darban

Conclusion

In this study, we were able to establish an in vitro protocol in the laboratory setting that is precise and reliable with minimum intra-variability. This established protocol will allow for future studies in which different coated CPB circuits can be compared for their effectiveness in blocking platelet activation during the CPB.

Methods

CPB was simulated in the laboratory using bovine blood in two different types of coated CPB circuits: Trillium® Biosurface by Medtronic, and XcoatingTM Surface by Terumo. Fresh bovine blood samples were collected and circulated through the CPB circuit following the standard protocol used in the operation rooms. Blood samples were then collected at 5 min, 30 min, and 55 min during the circulation. Blood plasmas were separated and subjected to enzyme-linked immunosorbent assay to measure most established platelet activation markers P-selectin, Platelet Factor 4 (PF4), Glycoprotein IIb/IIIa (GPIIb/IIIa), and β-thromboglobulin (β-TG) at different time points.

Results

The biomarker values at 30 min and 55 min were compared to the base values at 5 min for each type of CPB circuit. The results of the means from all measured biomarkers showed data measurements that indicated no significant variability within each coating. All collected data points fell within ±2 SD of the means, which was considered acceptable variations across technical replicates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。