N-acetylcysteine, a small molecule scavenger of reactive oxygen species, alleviates cardiomyocyte damage by regulating OPA1-mediated mitochondrial quality control and apoptosis in response to oxidative stress

N-乙酰半胱氨酸是一种活性氧的小分子清除剂,它通过调节 OPA1 介导的线粒体质量控制和氧化应激反应中的细胞凋亡来减轻心肌细胞损伤

阅读:11
作者:Junyi Zheng, Lili Zhao, Yuanyuan Liu, Mengying Chen, Xukun Guo, Jixiang Wang

Background

Oxidative stress-induced mitochondrial damage is the major cause of cardiomyocyte dysfunction. Therefore, the maintenance of mitochondrial function, which is regulated by mitochondrial quality control (MQC), is necessary for cardiomyocyte homeostasis. This study aimed to explore the underlying mechanisms of N-acetylcysteine (NAC) function and its relationship with MQC.

Conclusions

NAC ameliorated the injury to H9c2 cardiomyocytes caused by H2O2 by promoting the expression of OPA1, consequently improving mitochondrial function and decreasing apoptosis.

Methods

A hydrogen peroxide-induced oxidative stress model was established using H9c2 cardiomyocytes treated with or without NAC prior to oxidative stress stimulation. Autophagy with light chain 3 (LC3)-green fluorescent protein (GFP) assay, reactive oxygen species (ROS) with the 2',7'-dichlorodi hydrofluorescein diacetate (DCFH-DA) fluorescent, lactate dehydrogenase (LDH) release assay, adenosine triphosphate (ATP) content assay, and a mitochondrial membrane potential detection were used to evaluate mitochondrial dynamics in H2O2-treated H9c2 cardiomyocytes, with a focus on the involvement of MQC regulated by NAC. Cell apoptosis was analyzed using caspase-3 activity assay and Annexin V-fluorescein isothiocyanate (V-FITC)/propidium iodide (PI) double staining.

Results

We observed that NAC improved cell viability, reduced ROS levels, and partially restored optic atrophy 1 (OPA1) protein expression under oxidative stress. Following transfection with a specific OPA1-small interfering RNA, the mitophagy, mitochondrial dynamics, mitochondrial functions, and cardiomyocyte apoptosis were evaluated to further explore the mechanisms of NAC. Our results demonstrated that NAC attenuated cardiomyocyte apoptosis via the ROS/OPA1 axis and protected against oxidative stress-induced mitochondrial damage via the regulation of OPA1-mediated MQC. Conclusions: NAC ameliorated the injury to H9c2 cardiomyocytes caused by H2O2 by promoting the expression of OPA1, consequently improving mitochondrial function and decreasing apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。