Sequential adjustment of cytotoxic T lymphocyte densities improves efficacy in controlling tumor growth

连续调节细胞毒性T淋巴细胞密度可提高控制肿瘤生长的功效

阅读:14
作者:Roxana Khazen, Sabina Müller, Fanny Lafouresse, Salvatore Valitutti, Sylvain Cussat-Blanc

Abstract

Understanding the human cytotoxic T lymphocyte (CTL) biology is crucial to develop novel strategies aiming at maximizing their lytic capacity against cancer cells. Here we introduce an agent-based model, calibrated on population-scale experimental data that allows quantifying human CTL per capita killing. Our model highlights higher individual CTL killing capacity at lower CTL densities and fits experimental data of human melanoma cell killing. The model allows extending the analysis over prolonged time frames, difficult to investigate experimentally, and reveals that initial high CTL densities hamper efficacy to control melanoma growth. Computational analysis forecasts that sequential addition of fresh CTL cohorts improves tumor growth control. In vivo experimental data, obtained in a mouse melanoma model, confirm this prediction. Taken together, our results unveil the impact that sequential adjustment of cellular densities has on enhancing CTL efficacy over long-term confrontation with tumor cells. In perspective, they can be instrumental to refine CTL-based therapeutic strategies aiming at controlling tumor growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。