Pretreatment of Glioblastoma with Bortezomib Potentiates Natural Killer Cell Cytotoxicity through TRAIL/DR5 Mediated Apoptosis and Prolongs Animal Survival

用硼替佐米预处理胶质母细胞瘤可通过 TRAIL/DR5 介导的细胞凋亡增强自然杀伤细胞的细胞毒性并延长动物存活期

阅读:7
作者:Andrea Gras Navarro, Heidi Espedal, Justin Vareecal Joseph, Laura Trachsel-Moncho, Marzieh Bahador, Bjørn Tore Gjertsen, Einar Klæboe Kristoffersen, Anne Simonsen, Hrvoje Miletic, Per Øyvind Enger, Mohummad Aminur Rahman, Martha Chekenya

Background

Natural killer (NK) cells are potential effectors in anti-cancer immunotherapy; however only a subset potently kills cancer cells. Here, we examined whether pretreatment of glioblastoma (GBM) with the proteasome inhibitor, bortezomib (BTZ), might sensitize tumour cells to NK cell lysis by inducing stress antigens recognized by NK-activating receptors.

Conclusions

NK cells alone or in combination with BTZ inhibit tumour growth, but the scheduling of BTZ in vivo requires further investigation to maximize its contribution to the efficacy of the combination regimen.

Methods

Combination immunotherapy of NK cells with BTZ was studied in vitro against GBM cells and in a GBM-bearing mouse model. Tumour cells were derived from primary GBMs and NK cells from donors or patients. Flow cytometry was used for viability/cytotoxicity evaluation as well as in vitro and ex vivo phenotyping. We performed a Seahorse assay to assess oxygen consumption rates and mitochondrial function, Luminex ELISA to determine NK cell secretion, protein chemistry and LC-MS/MS to detect BTZ in brain tissue. MRI was used to monitor therapeutic efficacy in mice orthotopically implanted with GBM spheroids.

Results

NK cells released IFNγ, perforin and granzyme A cytolytic granules upon recognition of stress-ligand expressing GBM cells, disrupted mitochondrial function and killed 24-46% of cells by apoptosis. Pretreatment with BTZ further increased stress-ligands, induced TRAIL-R2 expression and enhanced GBM lysis to 33-76% through augmented IFNγ release (p < 0.05). Blocking NKG2D, TRAIL and TRAIL-R2 rescued GBM cells treated with BTZ from NK cells, p = 0.01. Adoptively transferred autologous NK-cells persisted in vivo (p < 0.05), diminished tumour proliferation and prolonged survival alone (Log Rank10.19, p = 0.0014, 95%CI 0.252-0.523) or when combined with BTZ (Log Rank5.25, p = 0.0219, 95%CI 0.295-0.408), or either compared to vehicle controls (median 98 vs. 68 days and 80 vs. 68 days, respectively). BTZ crossed the blood-brain barrier, attenuated proteasomal activity in vivo (p < 0.0001; p < 0.01 compared to vehicle control or NK cells only, respectively) and diminished tumour angiogenesis to promote survival compared to vehicle-treated controls (Log Rank6.57, p = 0.0104, 95%CI 0.284-0.424, median 83 vs. 68 days). However, NK ablation with anti-asialo-GM1 abrogated the therapeutic efficacy. Conclusions: NK cells alone or in combination with BTZ inhibit tumour growth, but the scheduling of BTZ in vivo requires further investigation to maximize its contribution to the efficacy of the combination regimen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。