Non-Substituted Imidazolium-Based Electrolytes as Potential Alternatives to the Conventional Acidic Electrolytes of Polyaniline-Based Electrode Materials for Supercapacitors

非取代咪唑基电解质作为超级电容器聚苯胺基电极材料传统酸性电解质的潜在替代品

阅读:7
作者:Fatima Al-Zohbi, Fouad Ghamouss, Johan Jacquemin, Bruno Schmaltz, Mohamad Fadel Tabcheh, Mohamed Abarbri, Khalil Cherry, François Tran-Van

Abstract

Although disubstituted imidazolium cation is sterically crowded, hundreds of ionic liquids based on this cation have been reported as electrolytes for energy storage devices. In contrast to disubstituted imidazolium, non-substituted imidazolium is uncrowded sterically and has not yet been investigated as an electrolyte, to the best of our knowledge. Hence, imidazolium hydrogen sulfate [Imi][HSO4], in mixture with water, was studied as an electrolyte for PANI-based electrode materials. For comparison, pyrrolidinium with hydrogen sulfate or p-toluene sulfonate ([Pyrr][HSO4] or [Pyrr][PTS]), in mixture with water, were also investigated as alternatives to the conventional electrolyte (i.e., aqueous H2SO4) for PANI electrodes. Walden plots of binary mixture ionic liquid-water weight ratios with the optimal ionic conductivity (i.e., [Imi][HSO4]/water 48/52 wt% (195.1 mS/cm), [Pyrr][HSO4]/water 41/59 wt% (186.6 mS/cm), and [Pyrr][PTS]/water 48/52 wt% (43.4 mS/cm) along with the electrochemical performances of PANI in these binary mixtures showed that [Pyrr][HSO4]aq or [Imi][HSO4]aq are convenient electrolytes for PANI/PIL, as opposed to [Pyrr][PTS]aq. Furthermore, replacing the conventional aqueous electrolyte H2SO4 with [Imi][HSO4] aq increased the specific capacitance of PANI/PIL from 249.8 to 268.5 F/g at 15 mV/s. Moreover, PANI/PIL electrodes displayed a quasi-ideal capacitive behavior in [Imi][HSO4]aq (the correction factor of CPE4 was 0.99). This primary study has shown that non-substituted imidazolium as an electrolyte could enhance the electrochemical performances of PANI electrodes and could be a good alternative to the conventional electrolyte.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。