Statin myalgia is not associated with reduced muscle strength, mass or protein turnover in older male volunteers, but is allied with a slowing of time to peak power output, insulin resistance and differential muscle mRNA expression

在老年男性志愿者中,他汀类药物引起的肌痛与肌肉强度、肌肉质量或蛋白质周转率下降无关,但与峰值功率输出时间减慢、胰岛素抵抗和肌肉 mRNA 表达差异有关

阅读:6
作者:Joanne E Mallinson, Kanagaraj Marimuthu, Andrew Murton, Anna Selby, Kenneth Smith, Dumitru Constantin-Teodosiu, Michael J Rennie, Paul L Greenhaff

Abstract

Statins are associated with muscle myalgia and myopathy, which probably reduce habitual physical activity. This is particularly relevant to older people who are less active, sarcopaenic and at increased risk of statin myalgia. We hypothesised that statin myalgia would be allied to impaired strength and work capacity in older people, and determined whether differences aligned with divergences in lean mass, protein turnover, insulin sensitivity and the molecular regulation of these processes. Knee extensor strength and work output during 30 maximal isokinetic contractions were assessed in healthy male volunteers, nine with no statin use (control 70.4 ± 0.7 years) and nine with statin myalgia (71.5 ± 0.9 years). Whole body and leg glucose disposal, muscle myofibrillar protein synthesis (MPS) and leg protein breakdown (LPB) were measured during fasting (≈5 mU l(-1) insulin) and fed (≈40 mU l(-1) insulin + hyperaminoacidaemia) euglyceamic clamps. Muscle biopsies were taken before and after each clamp. Lean mass, MPS, LPB and strength were not different but work output during the initial three isokinetic contractions was 19% lower (P < 0.05) in statin myalgic subjects due to a delay in time to reach peak power output. Statin myalgic subjects had reduced whole body (P = 0.05) and leg (P < 0.01) glucose disposal, greater abdominal adiposity (P < 0.05) and differential expression of 33 muscle mRNAs (5% false discovery rate (FDR)), six of which, linked to mitochondrial dysfunction and apoptosis, increased at 1% FDR. Statin myalgia was associated with impaired muscle function, increased abdominal adiposity, whole body and leg insulin resistance, and evidence of mitochondrial dysfunction and apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。