Exploring the sequence and structural determinants of the energy landscape from thermodynamically stable and kinetically trapped subtilisins: ISP1 and SbtE

探索热力学稳定和动力学捕获的枯草杆菌蛋白酶 ISP1 和 SbtE 的能量景观序列和结构决定因素

阅读:5
作者:Miriam R Hood, Susan Marqusee

Abstract

A protein's energy landscape, all the accessible conformations, their populations, and their dynamics of interconversion, is encoded in its primary sequence. While we have a good understanding of how a protein's primary sequence encodes its native state, we have a much weaker understanding of how sequence encodes the kinetic barriers such as unfolding and refolding. Here we have looked at two subtiliase homologs from the Bacillus subtilis, Intracellular Subtilisin Protease 1 (ISP1) and Subtilisin E (SbtE) that are expected to have very different dynamics. As an intracellular protein, ISP1 has a small pro-domain thought to act simply as a zymogen, whereas the extracellular SbtE has a large pro-domain required for folding. We examined the global and local energetics of the mature proteases and how each pro-domain impacts their landscapes. We find that ISP1's pro-domain has limited impact on the energy landscape while the mature SbtE is thermodynamically unstable and kinetically trapped. The impact of the pro-domain has opposite effects on the flexibility of the core of the protein. ISP1's core becomes more flexible while SbtE's core becomes more rigid. ISP1 contains a conserved amino-acid insertion not present in extracellular subtilisin proteases, which points to a potential source for these differences. These homologs are an extreme example of how changes in the primary sequence can dramatically alter a proteins energy landscape, both stability and dynamics, and highlight the need for large scale, high throughput studies on the relationship between primary sequence and conformational dynamics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。