Penultimate deglacial warming across the Mediterranean Sea revealed by clumped isotopes in foraminifera

有孔虫体内聚集的同位素揭示了地中海倒数第二次冰川消融变暖

阅读:8
作者:L Rodríguez-Sanz, S M Bernasconi, G Marino, D Heslop, I A Müller, A Fernandez, K M Grant, E J Rohling

Abstract

The variability of seawater temperature through time is a critical measure of climate change, yet its reconstruction remains problematic in many regions. Mg/Ca and oxygen isotope (δ 18OC) measurements in foraminiferal carbonate shells can be combined to reconstruct seawater temperature and δ 18O (δ 18OSW). The latter is a measure of changes in local hydrology (e.g., precipitation/evaporation, freshwater inputs) and global ice volume. But diagenetic processes may affect foraminiferal Mg/Ca. This restricts its potential in many places, including the Mediterranean Sea, a strategic region for deciphering global climate and sea-level changes. High alkalinity/salinity conditions especially bias Mg/Ca temperatures in the eastern Mediterranean (eMed). Here we advance the understanding of both western Mediterranean (wMed) and eMed hydrographic variability through the penultimate glacial termination (TII) and last interglacial, by applying the clumped isotope (Δ 47) paleothermometer to planktic foraminifera with a novel data-processing approach. Results suggest that North Atlantic cooling during Heinrich stadial 11 (HS11) affected surface-water temperatures much more in the wMed (during winter/spring) than in the eMed (during summer). The method's paired Δ 47 and δ 18OC data also portray δ 18OSW. These records reveal a clear HS11 freshwater signal, which attenuated toward the eMed, and also that last interglacial surface warming in the eMed was strongly amplified by water-column stratification during the deposition of the organic-rich (sapropel) interval known as S5.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。