Optimized human dedifferentiated fat cells from the buccal fat pad-derived osteoinductive extracellular vesicles promote osteoblast differentiation

来自颊脂肪垫衍生的骨诱导细胞外囊泡的优化人类去分化脂肪细胞促进成骨细胞分化

阅读:15
作者:Yusuke Nishiguchi, Mamoru Ueda, Hirohito Kubo, Jun-Ichiro Jo, Yoshiya Hashimoto, Toshihiko Takenobu

Conclusion

Isolating DFATs from buccal fat pads under osteogenic induction conditions offers a procedure confined to the oral cavity, eliminating the need for harvesting from other sites. Thus, DFAT-EVs hold promise for promoting bone regeneration in maxillofacial applications.

Methods

DFATs were isolated from human buccal fat pads, cultured to confluency, and placed in either a standard or osteogenic induction medium. After culturing for 3 days, the conditioned medium was used to generate EVs using the size-exclusion chromatography and concentration filter method.

Purpose

Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs). Materials and

Results

Characterization of DFAT-EVs revealed typical EV morphology and positive markers (CD9 and CD63), with no differences between the two groups. In vitro assays demonstrated that EVs derived from the osteogenic induction medium (OI-EVs) significantly increased alkaline phosphatase activity and osteogenesis-related genes (Runx2 and collagen type I) compared to control EVs. Next-generation sequencing identified differentially expressed miRNAs, and gene ontology analysis suggested pathways involved in osteoblast differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。