Integrated Analysis Reveals COL4A3 as a Novel Diagnostic and Therapeutic Target in UV-Related Skin Cutaneous Melanoma

综合分析表明 COL4A3 是紫外线相关皮肤黑色素瘤的新型诊断和治疗靶点

阅读:8
作者:Zuochao Yao, Lu Lu, Qianhui Xu, Shan Hua, Hui Wang, Hua Jiang

Background

High levels of UV exposure are a significant factor that can trigger the onset and progression of SKCM. Moreover, this exposure is closely linked to the malignancy of the tumor and the prognosis of patients. Our

Conclusion

The efficacy of the prognostic model was validated by analyzing the prognosis, immune infiltration, and immune checkpoint profiles. COL4A3 stands out as a novel diagnostic and therapeutic target for SKCM, offering new strategies for small-molecule targeted drug therapies.

Methods

This study used the weighted gene co-expression network analyses (WGCNA) and gene mutation frequency analyses to screen for UV-related target genes using the GSE59455 and the cancer genome atlas databases (TCGA). The prognostic model was created using Cox regression and least absolute shrinkage and selection operator analyses (LASSCO). Furthermore, in vitro experiments further validated that the overexpression or knockdown of COL4A3 could regulate the proliferation and migration abilities of SKMEL28 and A357 melanoma cells.

Results

A prognostic model was created that included six genes with a high UV-related mutation in SKCM: COL4A3, CHRM2, DSC3, GIMAP5, LAMC2, and PSG7. The model had a strong patient survival correlation (P˂0.001, hazard ratio (HR) = 1.57) and significant predictor (P˂0.001, HR = 3.050). Furthermore, the model negatively correlated with immune cells, including CD8+ T cells (Cor=-0.408, P˂0.001), and M1-type macrophages (Cor=-0.385, P˂0.001), and immune checkpoints, including programmed cell death ligand-1. Moreover, we identified COL4A3 as a molecule with significant predictive functionality. Overexpression of COL4A3 significantly inhibited the proliferation, migration, and invasion abilities of SKMEL28 and A357 melanoma cells, while knockdown of COL4A3 yielded the opposite results. And overexpression of COL4A3 enhanced the inhibitory effects of imatinib on the proliferation, migration, and invasion abilities of SKMEL28 and A357 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。