mTORC2 (Rictor) in Alzheimer's Disease and Reversal of Amyloid-β Expression-Induced Insulin Resistance and Toxicity in Rat Primary Cortical Neurons

mTORC2 (Rictor) 在阿尔茨海默病中的作用以及逆转淀粉样β蛋白表达引起的大鼠原代皮质神经元胰岛素抵抗和毒性

阅读:6
作者:Han-Kyu Lee, Bumsup Kwon, Cynthia A Lemere, Suzanne de la Monte, Kyohei Itamura, Austin Y Ha, Henry W Querfurth

Abstract

Mammalian target of rapamycin complex 1 (mTORC1), a nutrient sensor and central controller of cell growth and proliferation, is altered in various models of Alzheimer's disease (AD). Even less studied or understood in AD is mammalian target of rapamycin complex 2 (mTORC2) that influences cellular metabolism, in part through the regulations of Akt/PKB and SGK. Dysregulation of insulin/PI3K/Akt signaling is another important feature of AD pathogenesis. We found that both total mTORC1 and C2 protein levels and individual C1 and C2 enzymatic activities were decreased in human AD brain samples. In two rodent AD models, mTORC1 and C2 activities were also decreased. In a neuronal culture model of AD characterized by accumulation of cellular amyloid-β (Aβ)42, mTORC1 activity was reduced. Autophagic vesicles and markers were correspondingly increased and new protein synthesis was inhibited, consistent with mTORC1 hypofunction. Interestingly, mTORC2 activity in neural culture seemed resistant to the effects of intracellular amyloid. In various cell lines, Aβ expression provoked insulin resistance, characterized by inhibition of stimulated Akt phosphorylation, and an increase in negative mTORC1 regular, p-AMPK, itself a nutrient sensor. Rapamycin decreased phospho-mTOR and to lesser degree p-Rictor. This further suppression of mTORC1 activity protected cells from Aβ-induced toxicity and insulin resistance. More striking, Rictor over-expression fully reversed the Aβ-effects on primary neuronal cultures. Finally, using in vitro assay, Rictor protein addition completely overcame oligomeric Aβ-induced inhibition of the PDK-Akt activation step. We conclude that striking a new balance by restoring mTORC2 abundance and/or inhibition of mTORC1 has therapeutic potential in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。