Quality by Design Assisted Optimization and Risk Assessment of Black Cohosh Loaded Ethosomal Gel for Menopause: Investigating Different Formulation and Process Variables

更年期用黑升麻醇质凝胶的质量源于设计辅助优化和风险评估:研究不同的配方和工艺变量

阅读:5
作者:Sradhanjali Mohapatra, Mohd Aamir Mirza, Sayeed Ahmad, Uzma Farooq, Mohammad Javed Ansari, Kanchan Kohli, Zeenat Iqbal

Abstract

Black cohosh (Cimicifuga racemosa) (CR) is a popular herb and is medically lauded for ameliorating myriad symptoms associated with menopause. However, its pharmaceutical limitations and non-availability of a patient-compliant drug delivery approach have precluded its prevalent use. Henceforth, the current research premise is aimed at developing an ethosomal gel incorporating triterpene enriched fraction (TEF) obtained from CR and evaluating its effectiveness through the transdermal application. TEF-loaded ethosomes were formulated using solvent injection, optimized and characterised. The optimized ethosomes were then dispersed into a polymeric gel base to form ethosomal gel which was further compared with the conventional gel by in-vitro and ex-vivo experiments. Here, the quality by design (QbD) approach was exploited for the optimization and development of ethosomal gel. The elements of QbD comprising initial risk assessment, design of experimentation (DoE), and model validation for the development of formulation have all been described in detail. The optimized ethosomes (F03) showed a nanometric size range, negative zeta potential and good entrapment. The in vitro release profile of gel revealed a burst release pattern following the Korsmeyer Peppas model having Fickian diffusion. The transdermal flux of ethosomal gel was observed to be more than that of conventional gel. Texture analysis and rheological characterization of the gel, revealed good strength showing shear thinning and pseudoplastic behaviour. The confocal microscope investigation revealed the deeper skin permeation of ethosomal gel than conventional gel. This result was further strengthened by DSC, IR and histological assessment of the animal skin (Wistar rat), treated with the optimized formulation. Conclusively, the implementation of QbD in the formulation resulted in a better understanding of the process and the product. It aids in the reduction of product variability and defects, hence improving product development efficiencies. Additionally, the ethosomal gel was found to be a more effective and successful carrier for TEF than the conventional gel through the transdermal route. Moreover, this demands an appropriate animal study, which is underway, for a stronger outcome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。