Prophylactic Anti-Osteoporotic Effect of Matricaria chamomilla L. Flower Using Steroid-Induced Osteoporosis in Rat Model and Molecular Modelling Approaches

利用类固醇诱发的大鼠骨质疏松模型和分子建模方法研究母菊花的抗骨质疏松预防作用

阅读:11
作者:Abirami Raja, Govind Pratap Singh, Sana A Fadil, Sameh S Elhady, Fadia S Youssef, Mohamed L Ashour

Abstract

The anti-osteoporotic activity of ethanol extract from the Matricaria chamomilla L. flower was evaluated using steroid-induced osteoporosis in a rat model for the first time. Biochemical parameters such as serum calcium, phosphate, magnesium, creatinine, and alkaline phosphatase were assessed. At a 400 mg/kg body weight dose, the extract showed 54.01% and 27.73% reduction in serum calcium and phosphate ions serum levels, respectively. Meanwhile, it showed a 20% elevation in serum magnesium level, compared to the steroid-treated group. It also showed a significant decrease in creatinine and alkaline phosphatase levels, by 29.41% and 27.83%, respectively. The obtained results were further supported by biomechanical analyses, which revealed that a 400 mg/kg body weight dose of the flower extract increased bone strength and thickness. At the same time, it does not affect the bone length, compared to the diseased group. Histopathological examination revealed that the extract showed a significant increase in trabecular thickness, and it had restored the architecture of the cortical and trabecular structure with well-organized bone matrix. The possible inhibitory effect of the major phenolic compounds identified from the plant extract on cathepsin K was investigated using molecular docking. Rutin (4) had the best-fitting score within the active site, as evidenced by the free binding energy, (∆G = -54.19 Kcal/mol). ADMET/TOPKAT revealed that the examined compounds had variable pharmacodynamics and pharmacokinetic properties that could be improved to enhance the bioavailability during incorporation in various dosage forms. Thus, it can be concluded that this plant extract showed potential therapeutic benefits for osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。